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LETTER TO THE EDITOR

Discussion of "An elastodynamic solution for an anisotropic hollow sphere",

Int. 1. Solids Structures, Vol. 31, No.7, pp. 903-911 (1994).

In this paper, Wang has presented an analytical solution to the problem of impact response
of a spherically symmetric, transversely isotropic hollow sphere. To this end, he has
employed a finite Hankel transform whose kernel function is the eigenfunction G( C r)
determined from free vibration analysis of the associated problem [eqn (l8c) in the original
paper]. Numerical results are presented for the cases of a uniform sudden load and an
exponential decaying shock load.

For the case of a suddenly applied uniform load, Pao and Ceranoglu (1978) presented
an exact solution to an isotropic hollow sphere by using the ray theory, and Bickford and
Warren (1967) obtained the solution to a transversely isotropic hollow sphere by using
Laplace transforms with rational approximations for inverse Laplace transforms. On the
other hand, we have recently analysed the impact response of axisymmetric multi-layered
isotropic hollow spheres (Kobayashi et al., 1994) and transversely isotropic hollow cylinders
and spheres (Ishimaru et al., 1994) by means of the method of eigenfunction expansion
developed by Reismann (1967). Although the material constants used are somewhat differ­
ent from each other, we can compare the numerical results presented with each other,
especially for the isotropic case. As a result, we can understand that Wang's response curves
shown in Figs 1-3 are incorrect.

In the following, we show our solution procedure for the transversely isotropic hollow
spheres and the correct numerical results for both the isotropic and transversely isotropic
cases.

For a transversely isotropic sphere, the nonzero stress components o-,(r, t) and (Jo(r, t)
are expressed in terms of the radial displacement U(r, t) as

au U
(J,. = All;:).. +2A I2 -,

ur r
(I)

where Au are material constants given by eqn (3) in the original paper. The displacement
equation of motion is given by

where A 2
= 2(A 22 +A 23 -A I2 )/A II and V = ~(AI I!p).

Following Reismann (1967), a solution of eqn (2) can be taken in the form

x

U(r, t) = U,(r, t) + L Q,(t) U,(r),
i= I

(2)

(3)

where UJr, t) and U,(r) are, respectively, the quasi-static solution and eigenfunction, and
Q,(t) is a function of time t only to be determined from the initial conditions.

The quasi-static solution U,(r, t) satisfies the equation
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Fig. I. The isotropic hollow sphere for the case of E, = Eu = 200 GPa and ~ = 0: (a) a, at R = 0.0
and 0.5; (b) au at R = 0.0.

subject to the following associated boundary conditions:

(4)

t/!2(t) atr=b. (5)

The explicit form of U,(r, t) is presented in eqns (8) and (9) in the original paper.
The eigenfunction U;(r) is obtained from the free vibration analysis and satisfies the

equation

a2 uj 2 au; [2 A
2J-+--+ ~j-- Uj=O

or2 r or r2

subject to the following stress-free boundary conditions:

(6)



Letter to the Editor 129

1.5

1.0

0.5

a

~ 0.0
b

-0.5

-1.0

(a) R=O.O (1)
I- R=O.5 (2)

I- (2)

1\
N ~ ~ ~

{\

r
:I If ~ J ~ V

V

(1)

I I I
5

T
10 15 20

3.0r-----------------,

2.0

-1.0

(b) R=O.O

-2.0

T

Fig. 2. The anisotropic hollow sphere for the case of E, = 200 GPa, Eli! E,. = 25/9 and C( = 0: (a) (J,

at R = 0.0 and 0.5: (b) (Jii at R = 0.0: (c) (Jii at R = 0.5 : (d) (J" at R = 1.0.

au, Ui
A I 1 -~- + 2A 12 - = 0 at r = a and r = h,

er I'
(7)

where ~i = wi! V, Wi being a natural circular frequency.
The eigenfunction satisfying eqn (6) and corresponding frequency equation deter­

mining the ith eigenvalue ~i are given as follows:

where

(8)

(9)

(10)

[the expression of kin eqn (13a) in the original paper is incorrect] and the contents of Ja ,

Y,,, Jh and Yh are presented by eqns (15b-g) in the original paper. It should be noted that
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Fig.2-Continued.

the eigenfunction U,(r) is related with the kernel function G( ~" r) of eqn (18c) used by
Wang as Ui(r) = (~l)1!2G(~,r).

With the aid of the reciprocal theorem, the orthogonality of the eigenfunction can be
proved to be

rh

Ui(r) U j(r) dv = b'jM,J, (11 )

where dv = 4nr2 dr, bij is the Kronecker's delta, and N, is the norm of the eigenfunction.
Substituting eqn (3) into eqn (2) and utilizing eqns (4) and (6) and the orthogonality

of eigenfunction, we obtain the equation for the determination of Q,(t) as

(12)

where
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Fig. 3. The anisotropic hollow sphere for the case of E, = 200 GPa, Eo/E,_ = 25/9 and;.: = 500 :
(a) a, at R = 0.0 and 0.5; (b) ao at R = 0.0; (c) all at R = 0.5: (d) all at R = 1.0.

1 Ih

(Mt) = - -7 U,(r, t)Ui(r) dv.
N; a

The solution of eqn (12) is given by

1 . 1 I' ..Qi(t) = Qi(O) cos wit+ -Q(O) sin w;t+ - ¢;(r) sin [wi(t-r)] dr,
Wi W; 0

(13)

(14)

where Q;(O), Qi(O) are constants of integration to be determined from the initial conditions:

U(r,O) = O(r,O) = 0,

i.e.
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Fig. 3-Conrinued.

x

I Qi(O)Ui(r) = - U,(r, 0),
i= I

x

I (2,(0) U,(r) = - 0,(1',0).
i= I

( 15)

Making use of the orthogonality of eigenfunction, we obtain the following results from the
above equations as

QJO) = (jJ;(0) , (2i(O) = ¢i(O). (16)

Substitution of these into eqn (\4) and integration by parts gives

Qi(t) = rPi(t) -W; f' <Pi(r) sin [w,(t-r)] dr.
n

(17)

Thus our solution form is identical to that in the original paper.
Numerical results with the same values of material constants used by Wang are

presented in Figs 1-3.
Finally, we present the correct expressions for eqns (I Od, e) and (\ 2d, e) in the original

paper as follows:
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for eqns (lOd, e) and

Uir,O) = - U,(r, 0), Vir, 0) = - Vs(r, 0)

for eqns (l2d, e).

f(r,O) = - Ud (r, 0), j(r,O) = - Us1 (r, 0)
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